Simultaneous two-color imaging in digital holographic microscopy

نویسندگان

  • NICOLA E. FARTHING
  • RACHEL C. FINDLAY
  • JAN F. JIKELI
  • PEGINE B. WALRAD
  • MARTIN A. BEES
  • LAURENCE G. WILSON
چکیده

We demonstrate the use of two-color digital holographic microscopy (DHM) for imaging microbiological subjects. The use of two wavelengths significantly reduces artifacts present in the reconstructed data, allowing us to image weakly-scattering objects in close proximity to strongly-scattering objects. We demonstrate this by reconstructing the shape of the flagellum of a unicellular eukaryotic parasite Leishmania mexicana in close proximity to a more strongly-scattering cell body. Our approach also yields a reduction of approximately one third in the axial position uncertainty when tracking the motion of swimming cells at low magnification, which we demonstrate with a sample of Escherichia coli bacteria mixed with polystyrene beads. The two-wavelength system that we describe introduces minimal additional complexity into the optical system, and provides significant benefits. © 2017 Optical Society of America OCIS codes: (090.1995) Digital holography; (180.6900) Three-dimensional microscopy. References and links 1. J. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967). 2. U. Schnars and W. Jüptner, “Direct recording of holograms by a ccd target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). 3. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fouriertransform holographic microscope,” Appl. Opt. 31, 4973–4978 (1992). 4. M. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010). 5. W.Xu,M.H. Jericho, I. A.Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301–11305 (2001). 6. G. DiCaprio, G. Coppola, L. D. Stefano, M. D. Stefano, A. Antonucci, R. Congestri, and E. D. Tommasi, “Shedding light on diatom photonics by means of digital holography,” J. Biophotonics 7, 341–350 (2012). 7. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Optics 47, A52–A61 (2008). 8. T. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3d tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. 109, 16018–16022 (2012). 9. D. Boss, A. Hoffmann, B. Rappaz, C. Depeursinge, P. J. Magistretti, D. van de Ville, and P. Marquet, “Spatiallyresolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of atp in flickering,” PLoS One 7, e40667 (2012). 10. G. DiCaprio, A. El Mallahi, P. Ferraro, R. Dale, G. Coppola, B. Dale, G. Coppola, and F. Dubois, “4d tracking of clinical seminal samples for quantitative characterization of motility parameters,” Biomed. Opt. Express 5, 690–700 (2014). 11. H. Park, S.-H. Lee, K. Kim, S.-H. Cho, W.-J. L. Y. Kim, S.-E. Lee, and Y. Park, “Characterizations of individual mouse red blood cells parasitized by babesia microti using 3-d holographic microscopy,” Sci. Rep. 5, 10827 (2015). 12. J. F. Jikeli, L. Alvarez, B. M. Friedrich, L. G. Wilson, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, C. Brenker, and U. B. Kaupp, “Sperm navigation along helical paths in 3d chemoattractant landscapes,” Nat. Commun. 6, 7985 (2015). 13. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003). 14. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Optics 45, 836–850 (2006). 15. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals preyinduced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. 104, 17512–17517 (2007). 16. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Optics 52, A68–A80 (2013). 17. L. G. Wilson, L. M. Carter, and S. E. Reece, “High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms,” Proc. Natl. Acad. Sci. USA 110, 18769–18774 (2013). 18. K. L. Thornton, R. C. Findlay, P. B. Walrad, and L. G. Wilson, “Investigating the swimming of microbial pathogens using digital holography,” Adv. Exp. Med. Biol. 915, 17–32 (2016). 19. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012). 20. M. Molaei, M. Barry, R. Stocker, and J. Sheng, “Failed escape: Solid surfaces prevent tumbling of escherichia coli,” Phys. Rev. Lett. 113, 068103 (2014). 21. C. B. Giuliano, R. Zhang, and L. G. Wilson, “Digital inline holographic microscopy (dihm) of weakly-scattering subjects,” J. Vis. Exp. 84, e50488 (2014). 22. F. C. Cheong, C. C.Wong, Y. F. Gao,M.H. Nai, Y. Cui, S. Park, L. J. Kenney, and C. T. Lim, “Rapid, high-throughput tracking of bacterial motility in 3d via phase-contrast holographic video microscopy,” Biophys. J. 108, 1248–1256 (2016). 23. J. L. Nadeau, Y. B. Cho, J. Kühn, and K. Liewer, “Improved tracking and resolution of bacteria in holographic microscopy using dye and fluorescent protein labeling,” Front. Chem. 4, 17 (2016). 24. A. Wang, R. F. Garmann, and V. N. Manoharan, “Tracking e. coli runs and tumbles with scattering solutions and digital holographic microscopy,” Opt. Express 24, 23719–23725 (2017). 25. S. Bianchi, F. Saglimbeni, and R. Di Leonardo, “Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria,” Phys. Rev. X 7, 011010 (2017). 26. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007). 27. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). 28. I. Yamaguchi, J.-I. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Optics 40, 6177–6186 (2001). 29. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). 30. Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Laser. Eng. 47, 552–557 (2009). 31. D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012). 32. S. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275– 18282 (2007). 33. J. Fung, K. E. Martin, R. W. Perry, D. M. Katz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011). 34. S.-H. Lee and D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). 35. F. Saglimbeni, S. Bianchi, A. Lepore, and R. Di Leonardo, “Three-axis digital holographic microscopy for high speed volumetric imaging,” Opt. Express 22, 13710–13718 (2014). 36. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). 37. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). 38. L.M. De Pablos, T. R. Ferreira, and P. B. Walrad, “Developmental differentiation in leishmania lifecycle progression: post-transcriptional control conducts the orchestra,” Curr. Opin. Microbiol. 34, 82–89 (2016). 39. M. Wiese, D. Kuhn, and C. G. Grünfelder, “Protein kinase involved in flagellar-length control,” Eukaryot. Cell 2, 769–777 (2003). 40. C. Gadelha, B. Wickstead, and K. Gull, “Flagellar and ciliary beating in trypanosome motility,” Cell Mot. Cytoskel. 64, 629–643 (2007). 41. T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Research 1, 25 (2010). 42. S. O. Isikman, A. Greenbaum, W. Luo, A. F. Coskun, and A. Ozcan, “Giga-pixel lensfree holographic microscopy and tomography using color image sensors,” PLoS One 7, e45044 (2012). 43. Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, “Demosaiced pixel super-resolution for multiplexed holographic color imaging,” Sci. Rep.-UK 6, 28601 (2016). 44. H. C. Berg and D. A. Brown, “Chemotaxis in escherichia coli analysed by three-dimensional tracking,” Nature 239, 500 (1972). 45. L. Wilson and R. Zhang, “3d localization of weak scatterers in digital holographic microscopy using rayleighsommerfeld back-propagation,” Opt. Express 20, 16735–16744 (2012). 46. K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf, Real-time volume graphics (A.K. Peters Ltd., 2006). 47. C. Ó. S. Sorzano, P. Thévenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” IEEE T. Bio-Med. Eng. 52, 652–663 (2005). 48. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancal, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nature Met. 9, 676–682 (2012).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demosaiced pixel super-resolution for multiplexed holographic color imaging

To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve ind...

متن کامل

Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green...

متن کامل

Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing.

We present single-exposure super-resolved interferometric microscopy (SESRIM) as a novel approach capable of providing one-dimensional (1-D) super-resolution (SR) imaging in holographic microscopy using a single illumination shot. The single-exposure SR working principle is achieved by combining angular and wavelength multiplexing incoming from a set of tilted beams with different wavelengths w...

متن کامل

Simultaneous holographic imaging and light-scattering pattern measurement of individual microparticles.

This work combines digital holography with spatial filtering at two wavelengths to record the hologram and light-scattering pattern for a single particle using a color sensor. Particles 30-100 μm in size and with various shapes are considered. The results demonstrate the ability to unambiguously associate a complicated scattering pattern with the particle size, shape, and orientation.

متن کامل

Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms.

We present a digital method for holographic microscopy involving a CCD camera as a recording device. Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation. For phase-contrast imaging the reconstruction method involves the computation of a digital replica of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017